Zeilentrafo-Prüfgerät

Mit dieser kleinen und einfach aufzubauenden Schaltung können Zeilentransformatoren auf ihre grundsätzliche Funktion hin überprüft werden. Zusätzlich ist das Gerät auch als Durchgangsprüfer einsetzbar

Allgemeines

Vielfach sind es gerade die kleinen und einfachen Hilfsmittel, die den Servicetechnikern oder Hobbyelektronikern nützliche Dienste erweisen.

So zum Beispiel auch die hier vorgestellte, mit wenigen preiswerten Bauelementen aufzubauende Prüfschaltung.

Je nach Stellung des Kippschalters S 2, kann das Gerät entweder zur Durchgangsprüfung oder aber zum Test von Zeilentransformatoren dienen.

Zur Schaltung

Befindet sich S2 in der eingezeichneten Stellung, leuchtet die rote LED (D3), wenn die Eingangsprüfklemmen "c" und "d" offen sind bzw. der dort anliegende Widerstand größer als 1 M Ω ist. Werden hingegen die beiden Meßeingänge mit einem Widerstand verbunden, dessen Wert zwischen 0 Ω (Kurzschluß) und 100 k Ω liegt, erlischt die rote LED und die grüne LED (D2) leuchtet

Bringt man den Kippschalter S 2 in die entgegengesetzte Position, so arbeitet die Schaltung als Zeilentrafo-Prüfgerät.

Die Funktionsweise ist wie folgt:

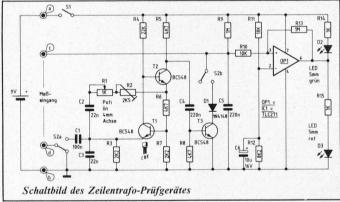
Die Transistoren T1 und T2 stellen mit

ihrer Zusatzbeschaltung einen schwingenden Oszillator dar. Die im Bereich von 5 bis 10 kHz liegende Frequenz wird über C4 auf den Verstärkertransistor T 3 gegeben. Über D 1 zieht der Kollektor von T3 bei jeder positiven Halbwelle des Oszillators den Punkt "c" auf Masse (der Schalter S2 befindet sich, wie bereits erwähnt, in der entgegengesetzten Position). Während der negativen Halbwelle sorgt der Kondenstor C5 dafür, daß die Spannung nicht "hochläuft". Über R 10 gelangt die an Punkt "c" anstehende Meßspannung auf den nicht invertierenden (+) Eingang des als Komparator arbeitenden OP1 (Pin 3), der über R 12 stark mitgekoppelt ist (große Hysterese).

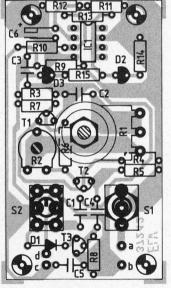
Solange der Oszillator schwingt, befindet sich Punkt "c" ungefähr auf Massepotential (ca. 1 V), so daß die Spannung am invertierenden (–) Eingang (Pin 2) des OP 2 größer ist als die Spannung am nicht invertierenden Eingang (Pin 3). Der Ausgang des OP 1 (Pin 6) liegt damit annähernd auf Massepotential und die grüne LED (D 2) leuchtet.

Die Rückkoppelung des Oszillators wird nun mit R 1 so eingestellt, daß ohne angeschlossenen Zeilentrafo die Schwingung gerade nicht abreißt (grüne LED leuchtet). Mit R 2 wird eine einmalige Voreinstellung Vorgenommen, damit der Regelbereich vo

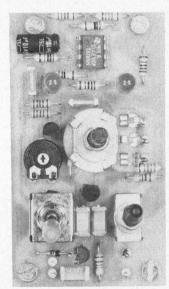
vorgenommen, damit der Regelbereich von R 1 sich um die Mittellage herum bewegt.


Wird ein Zeilentrafo an die Meßeingänge (Punkt "c" und "d") angeschlossen, schwingt der Oszillator einwandfrei weiter, sofern der Prüfling keinen internen Verbindungsschluß aufweist (geringe Dämpfung des Oszillators durch die Induktivität des Zeilentrafos). Ist hingegen der Zeilentrafo defekt, d. h. liegt ein Windungsschluß vor, so stellt die Induktivität des Zeilentrafos mit ihren durch den Windungsschluß bedingten höheren Verlusten eine stärkere Bedämpfung des Oszillators dar, wodurch die Schwingung abreißt.

T 3 wird über R 8 gesperrt und die Spannung an Punkt "c" steigt an.


Sobald der Spannungswert an Pin 3 des OP 1 den Wert an Pin 2 übersteigt, schaltet der Ausgang des OP 1 (Pin 6) auf "high" — die rote LED leuchtet (Zeilentrafo defekt).

Zum Nachbau


Die kleine Platine wird in gewohnter Weise zunächst mit den passiven und dann mit den aktiven Bauelementen bestückt. Nachdem alle Lötungen durchgeführt und die Leiterplatte noch einmal überprüft wurde, kann sie in ein kleines passendes Gehäuse eingebaut werden.

Stückliste: Zeilentrafo-Prüfgerät		
Halbleiter	Widerstände	Sonstiges
IC1	R1 1 kΩ, Poti, lin, 4 mm Achse	1 9 V-Batterieclip 7 Lötstifte
D11N4148	R 2 2,5 kΩ, Trimmer, liegend	4 Abstandsröllchen 16 mm
D2 LED, grün, 5 mm D3 LED, rot, 5 mm	R3, R72,2 kΩ	4 Schrauben M3 x 20 mm
	R4 22 kΩ R5, R6, R84,7 kΩ	1 Kippschalter 1 x um 1 Kippschalter 2 x um
Kondensatoren	R9, R13 1 MΩ	1 Spannzangendrehknopf Ø 10 mm
C1 100 nF	R10 10 kΩ	mit Deckel und Pfeilscheibe
C2, C3 22 nF	R11 18 kΩ	2 Miniatur-Krokoklemmen
C4, C5 220 nF C6 10 μF/16 V	R12 8,2 kΩ R14, R15 1 kΩ	

Bestückungsseite der Platine des Zeilentrafo-Prüfgerätes

Ansicht der fertig bestückten Platine des Zeilentrafo-Prüfgerätes