

Best.-Nr.: 154712 Version: 2

Stand: November 2022

Prototypen-Adapter

PAD2

Technischer Kundendienst

Für Fragen und Auskünfte stehen Ihnen unsere qualifizierten technischen Mitarbeiter gerne zur Verfügung.

ELV · Technischer Kundendienst · Postfach 1000 · 26787 Leer · Germany

E-Mail: technik@elv.com

Telefon: Deutschland und Österreich: (+49) 491/6008-245 · Schweiz 061/8310-100

Häufig gestellte Fragen und aktuelle Hinweise zum Betrieb des Produkts finden Sie bei der Artikelbeschreibung

im ELVshop: www.elv.com

Reparaturservice

Für Geräte, die aus ELV Bausätzen hergestellt wurden, bieten wir unseren Kunden einen Reparaturservice an.

Selbstverständlich wird Ihr Gerät so kostengünstig wie möglich instand gesetzt. Im Sinne einer schnellen Abwicklung führen wir die Reparatur sofort durch, wenn die Reparaturkosten den halben Komplettbausatzpreis nicht überschreiten. Sollte der Defekt größer sein, erhalten Sie zunächst einen unverbindlichen Kostenvoranschlag.

Bitte senden Sie Ihr Gerät an: ELV · Reparaturservice · 26787 Leer · Germany

Hinweis zu den vorbestückten Bausatz-Leiterplatten

Sehr geehrter Kunde,

das Gesetz über das Inverkehrbringen, die Rücknahme und die umweltverträgliche Entsorgung von Elektro- und Elektronikgeräten (ElektroG) verbietet (abgesehen von wenigen Ausnahmen) seit dem 1. Juli 2006 u. a. die Verwendung von Blei und bleihaltigen Stoffen mit mehr als 0,1 Gewichtsprozent Blei in der Elektro- und Elektronikproduktion.

Die ELV Produktion wurde daher auf bleifreie Lötzinn-Legierungen umgestellt, und sämtliche vorbestückte Leiterplatten sind bleifrei verlötet.

Bleihaltige Lote dürfen im Privatbereich zwar weiterhin verwendet werden, jedoch kann das Mischen von bleifreien und bleihaltigen Loten auf einer Leiterplatte zu Problemen führen, wenn diese im direkten Kontakt zueinander stehen. Der Schmelzpunkt an der Übergangsstelle kann sich verringern, wenn niedrig schmelzende Metalle wie Blei oder Wismut mit bleifreiem Lot vermischt werden. Das unterschiedliche Erstarren kann zum Abheben von Leiterbahnen (Lift-off-Effekt) führen. Des Weiteren kann der Schmelzpunkt dann an der Übergangsstelle unterhalb des Schmelzpunkts von verbleitem Lötzinn liegen. Insbesondere beim Verlöten von Leistungsbauelementen mit hoher Temperatur ist dies zu beachten.

Wir empfehlen daher beim Aufbau von Bausätzen den Einsatz von bleifreien Loten.

Entsorgungshinweis

Gerät nicht im Hausmüll entsorgen!

Elektronische Geräte sind entsprechend der Richtlinie über Elektro- und Elektronik-Altgeräte über die örtlichen Sammelstellen für Elektronik-Altgeräte zu entsorgen!

Verbrauchte Batterien gehören nicht in den Hausmüll! Entsorgen Sie diese in Ihrer örtlichen Batteriesammelstelle!

ELV Elektronik AG · Maiburger Straße 29-36 · 26789 Leer · Germany Telefon 0491/6008-88 · Telefax 0491/6008-7016 · www.elv.com

Prototypen-Adapter linear PAD2

Mit den hier vorgestellten Platinenmodulen können Operationsverstärker, Transistoren, Spannungsregler und Dioden bequem mittels kleiner Adapter auf Steckboards eingesetzt werden. Dabei ist neben der Steckbarkeit der Module mit aufgelöteten SMD-Komponenten die aufgedruckte Anschlussbelegung der Bauteile ein wesentliches Feature.

PAD2
Artikel-Nr.
154712
Bausatzbeschreibung
und Preis:
www.elv.com

Schwierigkeitsgrad: leicht

Ungefähre Bauzeit: 3 h

Besondere Werkzeuge: Lötkolben

Löterfahrung:

Programmierkenntnisse: nein

Elektrische Fachkraft: nein

Kleine Helfer ...

Nachdem wir im ELVjournal 6/2018 das PAD1 für den Einsatz von mechanischen Bauteilen mittels Adapterplatinen auf Steckboards vorgestellt haben, widmen wir uns mit dem PAD2 den linearen und aktiven, diskreten Bauteilen. Hierzu zählen Operationsverstärker (OPs), Transistoren, Spannungsregler und Dioden.

Nun wird sich manch einer fragen: Wozu brauche ich eine Adapterplatine, wenn ich das Bauteil doch direkt auf das Steckboard stecken kann? Dieses Argument ist natürlich vollkommen richtig, doch wer häufiger Schaltungen auf Steckboards aufbaut, wird die Prototypen-Adapter zu schätzen wissen. Ein Blick auf Bild 1 verdeutlicht den Unterschied zwischen den beiden Vorgehensweisen. Im rechten Teil (Bild 1) ist das Bauteil (als Beispiel hier ein Operationsverstärker) direkt auf das Steckboard gesteckt. Um den Operationsverstärker nutzen zu können, ist in der Regel ein Anschlussschema (Pinbelegung) erforderlich, wie in unserem Beispiel das Datenblatt mit Schaltbild. Bei der Verwendung eines Platinenadapters ist das Anschlussschema hingegen auf der Platinenoberfläche aufgedruckt. Die Ein- bzw. Ausgänge des Operationsverstärkers sind ohne Zuhilfenahme eines Datenblatts ersichtlich. Dies erleichtert das Arbeiten mit Operationsverstärkern, zudem wird die "gesteckte" Schaltung deutlich übersichtlicher.

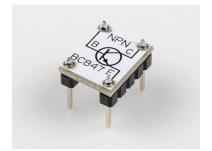
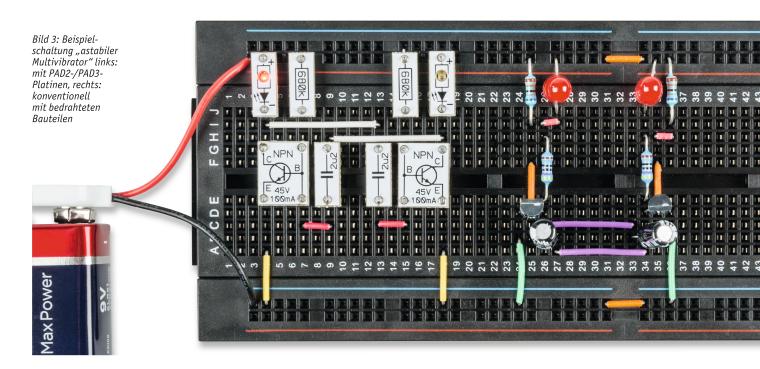


Bild 1: Unterschied zwischen einem PAD-Adapter und einem IC im DIP-Gehäuse

Bild 2: Transistor als PAD-Adapter

Auch bei Transistoren, Dioden und Widerständen sind solche Adapter sehr nützlich (Bild 2). In Bild 3 ist die Beispielschaltung einer Blinkschaltung zu sehen. Im linken Teil ist ein astabiler Multivibrator (einfache Blinkschaltung) mit Bauteilen der PADx-Reihe realisiert. Der erfahrene Elektroniker erkennt sofort, um was für eine Schaltung es sich hier handelt. Im rechten Teil von Bild 3 ist die identische Schaltung auf konventionelle Weise mit bedrahteten Bauteilen aufgebaut.

Hinweis: Die abgebildeten Adapterplatinen für Widerstände und Kondensatoren gehören zum Bausatz PAD3, der im ELVjournal 1/2020 vorgestellt werden wird.


Operationsverstärker – Beschreibung und Erläuterungen zu den technischen Daten

Zu den Operationsverstärkern, die sich auf dem PAD2 befinden, sind im Folgenden die wichtigsten technischen Daten in Kurzform angegeben. Weitere detaillierte Daten sind dem Datenblatt des Herstellers zu entnehmen. Die Links zu den Datenblättern befinden sich am Ende des Artikels [1]. Hier die Erklärungen und Hinweise zu den technischen Daten:

Spannung UB:

Die Versorgungsspannungsgrenzen für das Bauteil. Die Spannungsgrenzen müssen unbedingt eingehalten werden.

	Menge	Тур	Funktion
	4	LM358	OP universal (2-fach)
	2	LMV358	OP universal (2-fach)
	2	NE5532D	OP Audio (2-fach)
	3	LM393	Komparator (2-fach)
	2	TLV272ID	OP universal (2-fach)
	1	TSH80IYLT	OP Video (1-fach)
	2	TL062	OP universal (2-fach)
	1	LMV321	OP universal (1-fach)
	1	TS9011SCY	Spannungsregler 3,3 V
	1	TA78L05F	Spannungsregler 5 V
	1	HT7318	Spannungsregler 1,8 V
	5	1N4148W	Diode Silizium 75 V/0,15 A
	5	BAT54	Diode Schottky 30 V/0,3 A
	4	BC847C	Transistor NPN 45 V/0,1 A
u 1 1	4	BC857C	Transistor PNP 45 V/0,1 A
Į L	5	LED	LED (rot) mit Vorwiderstand
٦	4	IRLML2502	MOSFET-Transistor N-Kanal
	4	IRLML6402	MOSFET-Transistor P-Kanal
=	1	ICM7555	Timer-Baustein (NE555)

• Stromaufnahme IR:

Bei Operationsverstärkern bezieht sich dieser Wert auf die Stromaufnahme für einen einzelnen Operationsverstärker.

• Ausgangstrom Iout:

Der maximale Strom, mit dem der Ausgang belastet werden darf. Bei Transistoren ist dies der maximal zulässige Strom.

• Frequenz (ft):

Bei Operationsverstärkern: Gibt den Frequenzgang (unity gain) bei einer Verstärkung von V=1 an. Wird der Verstärkungsfaktor erhöht, verringert sich dieser Wert.

Bei Transistoren (fr): Gibt die maximale Arbeitsfrequenz eines Transistors an, gemessen bei einem Verstärkungsfaktor von hFE=1.

• Eingangsoffset (IUEO):

Gibt die Offsetspannung (Fehlspannung) an, die zwischen den beiden Eingängen anliegt, wenn der Ausgang auf 0 V liegt.

• Rail to Rail:

Dieser Begriff kann sich auf den Eingang oder Ausgang eines Verstärkers beziehen. Rail to Rail sagt aus, dass die Spannung am Ein- bzw. Ausgang sehr nahe (ca. 100 mV) an die Versorgungsspannungsgrenzen heranreichen kann bzw. darf. Mit einem Verstärker der einen Rail-to-Rail-Eingang aufweist, lassen sich sehr kleine Spannungen, mit Bezug auf Masse- oder Versorgungsspannungspotenzial, messen.

• Anwendungsbereiche:

Hier werden spezielle Anwendungsbereiche aufgeführt. Wenn sich ein Verstärker z. B. besonders gut für den Einsatz in Videoverstärkern eignet, steht hier "Video".

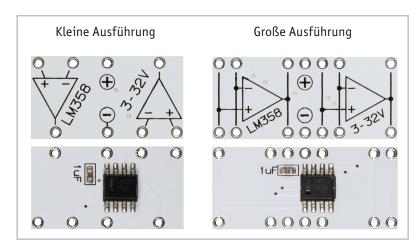


Bild 4: Beispiel für unterschiedliche Platinenversionen

Auf dem PAD2 befinden sich sieben unterschiedliche Operationsverstärker und ein Komparator. Die Auswahl des richtigen Verstärkers ist von verschiedenen Faktoren abhängig. Es gibt viele Kriterien und Anforderungen, die an einen Operationsverstärker gestellt werden. Eine der wichtigsten Anforderungen ist der Versorgungsspannungsbereich. Hiermit beginnt das erste Merkmal zum Ausschlussverfahren. Als Nächstes würde man sich vielleicht den Frequenzgang anschauen, aber auch die Stromaufnahme kann von großer Bedeutung sein. Möchte man eine Schaltung für Batteriebetrieb entwickeln, ist die Stromaufnahme ein wichtiges Merkmal. In der Tabelle 1 sind alle Operationsverstärker des PAD2 mit den wichtigsten Daten aufgelistet und ermöglichen einen direkten Vergleich der Daten.

Einige Hersteller bieten den gleichen Operationsverstärker in unterschiedlichen Gehäusevarianten an. Dabei kann ein Gehäuse ein, zwei oder auch vier identische OPs enthalten. In der Regel wird dies aus Platzgründen gemacht. Ein 1-fach-Verstärker kann in einem sehr kleinen SOT23-5-Gehäuse untergebracht werden, wie das Beispiel des LMV321 zeigt (Bild 5). Im LM358 hingegen sind zwei OPs untergebracht, also zwei

	Technische Daten: Operationsverstärker und Komparator								
	Тур	Funktion	UB	IR	Іоит	fт	IUEO	Anwendungsbereiche	Besonderheiten
	LM358	1-fach-OP	3-32 V	500 μΑ	40 mA	1 MHz	2 mV	AudioMesstechnikallgemeine Anwendung	Rail-to-Rail-Ausgangniedrige Stromaufnahmeniedriger Leistungsbedarf
	LMV321	1-fach-OP	2,7-5,5 V	130 μΑ	25 mA	1 MHz	1,7 mV	• universell • Audio	 Rail-to-Rail-Ausgang niedrige Stromaufnahme niedriger Leistungsbedarf Single-Version des LMV358
	LMV358	2-fach-OP	2,7-5,5 V	130 μΑ	25 mA	1 MHz	1,7 mV	• universell • Audio	 Rail-to-Rail-Ausgang niedrige Stromaufnahme niedriger Leistungsbedarf Doppelversion des LMV321
	LM393	2-fach-Komparator	2-36 V	1 mA	16 mA		1 mV	• Fensterkomparator	Rail-to-Rail-Ausgangniedrige Stromaufnahmefür Batteriebetrieb geeignet
	TL062	2-fach-OP	5-36 V	0,4 mA	100 mA	1 MHz	3 mV	FilterAudioMesstechnik	 JFET-Eingänge niedrige Stromaufnahme für Batteriebetrieb geeignet
	TLV272ID	2-fach-OP	2,7-16 V	550 μΑ	100 mA	3 MHz	0,5 mV	SolartechnikMesstechnikuniversell	 Rail-to-Rail-Ausgang niedrige Stromaufnahme für Batteriebetrieb geeignet CMOS-Eingänge
֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝ ֓֓֞֞֞֞	NE5532	2-fach-OP	6-40 V	8 mA	35 mA	10 MHz	0,5 mV	• Audio	• sehr rauscharm
	TSH80IYLT	1-fach-0P	4,5-12 V	10 mA	55 mA	100 MHz	1,1 mV	• Videoverstärker	Rail-to-Rail-Ausgangniedriger Klirrfaktor (0,1 %)speziell für Video

LMV321. Wie man in der Tabelle 1 erkennt, sind die technischen Daten vom LMV321 und LM358 identisch. Es gibt auch eine 4fach-Version, die sich dann LMV324 nennt.

Wie man in Bild 4 erkennt, sind auf dem Nutzen des PAD2 zwei Ausführungen für Doppel-OPs verfügbar. Bei der großen Ausführung sind die Eingänge doppelt herausgeführt. Dies kann nützlich sein, wenn die periphere Schaltung sehr umfangreich ist, wie z. B. bei Filterschaltungen. Was man auf dem Platinenaufdruck nicht erkennt: Zwischen den Versorgungsspannungsanschlüssen ist ein Keramikkondensator $1\,\mu\text{F}/50\,\text{V}$ geschaltet. Durch sehr kurze Verbindungsleitungen zu den Gehäuseanschlüssen ergibt sich eine gute Blockung der Versorgungsspannung. Im Folgenden sollen noch einige spezielle Bauteile näher beschrieben werden.

Komparator LM393

Ein Komparator ist ein spezieller Operationsverstärker, der auf das Vergleichen von Spannungen ausgelegt ist. Wir haben uns für den universellen LM393 entschieden, der zwei separat nutzbare Komparatoren enthält. Im Gegensatz zu einem Operationsverstärker kennt der Komparator nur zwei Ausgangszustände: High oder Low.

Der Ausgangszustand ist abhängig vom Spannungspotenzial der beiden Eingänge. Die Spannungen an den Eingängen werden miteinander verglichen, und abhängig davon wird der Ausgang geschaltet. Der Ausgang ist als "Open Collector" ausgelegt. Beim Experimentieren mit dem LM393 wird diese Eigenschaft gern übersehen. Schließt man keinen Pull-up-Widerstand oder eine Last an den Ausgang, ist auch keine Spannungsänderung am Ausgang messbar. Das Beispiel in Bild 6 zeigt eine Low-Bat-Erkennung mit dem LM393. Die Batteriespannung wird mit dem Spannungsteiler R2/R3 "heruntergeteilt" und mit dem nichtinvertierenden Eingang des LM393 verbunden. Eine Referenzspannung, gebildet von der 1,235-V-Diode LM385, liegt am invertierenden Eingang

an. Sinkt die Batteriespannung unterhalb von 6 V, ist die Spannung am Spannungsteiler kleiner als die Referenzspannung, und infolgedessen schaltet der Ausgang des LM393 auf Masse – die LED leuchtet.

Allround-OP TLV272

Den TLV272 kann man als Multitalent bezeichnen. Neben dem großen Versorgungsspannungsbereich ist auch der relativ weite Frequenzbereich von 3 MHz zu erwähnen. Dieser moderne OP in CMOS-Technik hat sehr hochohmige Eingänge und zeichnet sich dadurch besonders für Messaufgaben aus, wo Sensoren ausgewertet werden sollen. Auch hier steht je nach Beschaltung eine kleine und große Platinenversion zur Verfügung.

Videoverstärker TSH80

Der TSH80 ist ein spezieller Verstärker für Video-anwendungen. Sein Hauptvorteilistderhohe Frequenzgang von 100 MHz und der 150- Ω -Ausgangstreiber. Der Ausgang liefert einen maximalen Strom von 55 mA, sogar noch bei einer Frequenz von 100 MHz (-3 dB). Ein Ausgangstreiber für 150 Ω bedeutet, dass hiermit eine Last von 75 Ω oder 50 Ω getrieben werden kann. Nach dem Prinzip der Leistungsanpassung müssen der Innenwiderstand einer Quelle und der Lastwiderstand identisch sein.

Aus diesem Grund muss ein Verstärker für Impedanzen von 75 Ω (Videotechnik) in der Lage sein, den entsprechenden Strom für eine Last von 150 Ω (75 Ω + 75 Ω) zu liefern. In Bild 8 ist ein einfacher Videoverstärker auf einem Steckbrett realisiert. Die

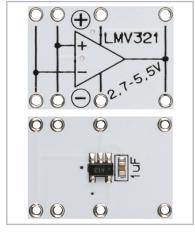


Bild 5: Platine des LMV321

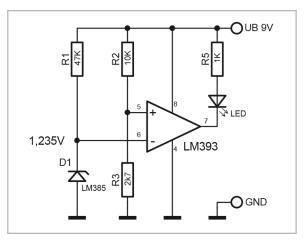


Bild 6: Beispiel für einen Spannungsvergleicher

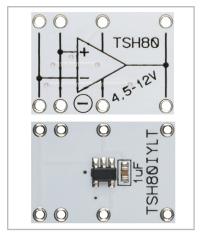
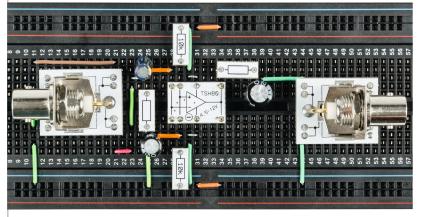



Bild 7: Platine des TSH80-Adapters

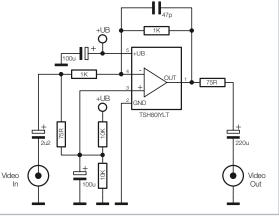


Bild 8: Beispielschaltung mit dem TSH80 als Videoverstärker

Buchsen entstammen dem PAD1, wobei die Widerstände und Kondensatoren dem PAD3 entstammen, der im nächsten Journal vorgestellt wird.

In Bild 7 ist die Ober- und Unterseite des TSH80-Adapters dargestellt. Dieser Verstärker ist nur im SMD-Gehäuse erhältlich und zeigt, dass es Fälle gibt, in denen eine Adapterplatine unausweichlich ist, möchte man solche Bauteile auf Steckboards einsetzten.

Rauscharmer Audioverstärker NE5532

Der NE5532 ist ein 2-fach-OP mit sehr niedrigem Rauschen und speziell für Audioanwendungen ausgelegt.

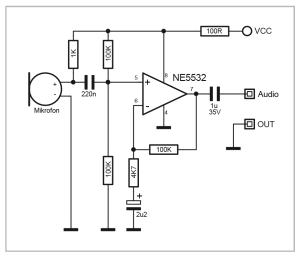


Bild 9: Beispiel für einen rauscharmen Mikrofonverstärker mit dem NF5532

In Bild 9 ist eine Beispielschaltung für einen rauscharmen Mikrofonverstärker zu sehen. Bedingt durch die relativ niedrigen Beschaffungskosten ist der NE5532 für den Einsatz in Audioschaltungen sehr beliebt. Natürlich gibt es noch rauschärmere Verstärker (OPs), die dann aber kostenintensiver sind.

Leerplatinen für Operationsverstärker

Für diejenigen, die gerne "eigene" Operationsverstärker auf Adapterplatinen verwenden möchten, stehen Leerplatinen in unterschiedlichen Versionen zur Verfügung. Voraussetzung hierfür sind Erfahrung mit dem Löten von SMD-Bauteilen. In Bild 10 sind die unterschiedlichen Platinenversionen dargestellt. OPs im SO8-Gehäuse sind in der Regel Doppel-OPs, d. h. zwei OPs in einem Gehäuse, und weisen ein einheitliches Anschlussschema auf (siehe Bild 10). Die Gehäuseform SO8 ist für erfahrene Elektroniker recht einfach aufzulöten, da der Pinabstand (Pitch) 1,28 mm beträgt.

Für OPs im SOT23-5-Gehäuse sind zwei unterschiedliche Platinenversionen vorhanden, die mit V1 und V2 gekennzeichnet sind. In der Gehäuseform SOT23-5 ist, bedingt durch die wenigen Anschlüsse, immer nur ein OP vorhanden. Die Anschlussbelegung gibt somit vor, welche Platinenversion zu verwenden ist. Wie bei allen anderen Adapterplatinen vom PAD2 auch ist der Blockkondensator (1 μ F/50 V) schon auf der Platine vorhanden.

Timer-Baustein ICM7555 (NE555)

Wenn es um analoge elektronische Schaltkreise geht, darf der bekannte NE555 nicht fehlen. Mit diesem universellen Timer-IC lassen sich zahlreiche Schaltungen realisieren, die nicht nur auf Timerfunktionen beschränkt sein müssen. Im Internet finden sich diverse Schaltungsvorschläge zum Thema NE555. Im Journalartikel "NE555-EXB" [2] haben wir uns intensiv diesem Thema gewidmet und ein eigenes Experimentierboard für diesen Baustein vorgestellt. Auf dem PAD2 kommt der mo-

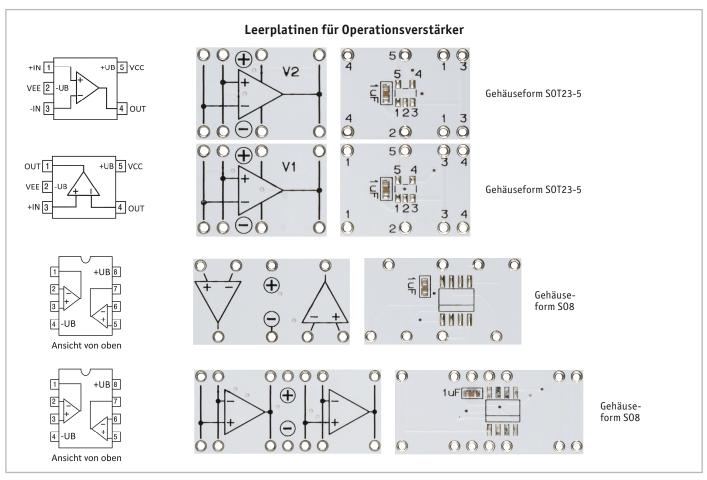
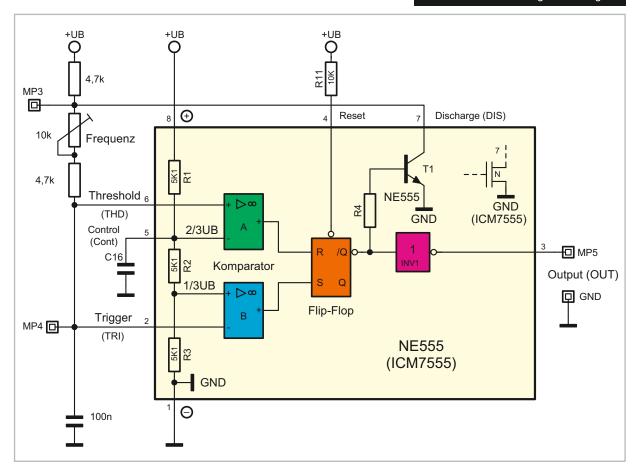



Bild 10: Für die händische Bestückung von Operationsverstärkern stehen vier unterschiedliche Platinenversionen zur Verfügung.

Bild 11: Beispielschaltung eines Oszillators mit dem ICM7555

derne Nachfolger ICM7555 des NE555 zum Einsatz. Der ICM7555 ist von der Funktion her mit dem NE555 identisch, mit dem einzigen Unterschied der wesentlich geringeren Stromaufnahme. Bild 11 zeigt eine Beispielschaltung (Oszillator) mit dem ICM7555.

Die Beschriftungen der Anschlusspins auf dem Platinenausschnitt (Bild 12) des ICM7555 sind abgekürzt. Die Langbezeichnungen sind dem Bild 11 zu entnehmen.

Transistoren: bipolar und MOSFET

Die auf dem PAD2 verwendeten Transistoren können in zwei unterschiedliche Varianten unterteilt werden: in die biopolaren Transistoren und die MOSFETs.

Als bipolare Typen sind die gebräuchlichen Transistoren BC847C (NPN) und BC857C (PNP) vorgesehen. Diese können als Verstärker oder für kleine Schaltaufgaben verwendet werden. Dabei gilt zu beachten,

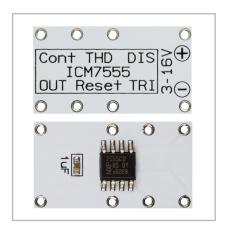


Bild 12: Platinenausschnitt vom ICM7555

dass die Schaltleistung nur 100 mA beträgt. Dieser Strom reicht aus, um z. B. kleine Relais oder LEDs anzusteuern. Wie man in Bild 13 erkennt, gibt es Transistorsymbole die nach links oder rechts ausgerichtet sind. Dies hat rein optische Gründe, wie man im Beispiel für den astabilen Multivibrator (Blinkschaltung) in Bild 3 erkennt.

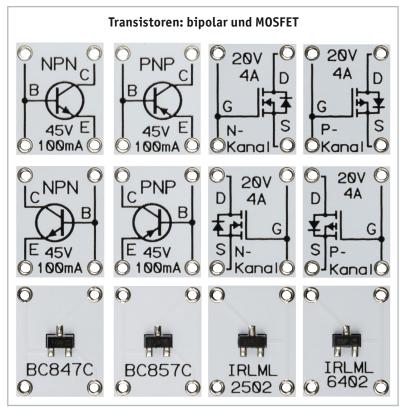


Bild 13: Alle Transistoren im Überblick

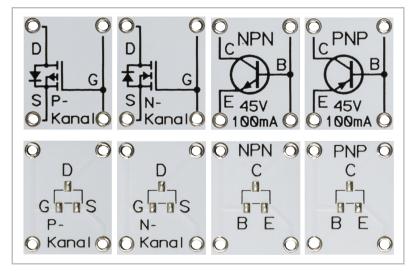


Bild 14: Leerplatinen für Transistoren

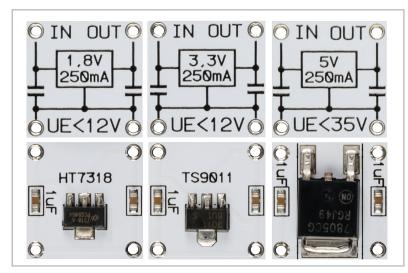


Bild 15: Die Adapterplatinen der Spannungsregler

Technischen Daten d	er verwendeten	Transistoren				
Тур	BC847C	BC857C	IRLML2502	IRLML6402		
Technologie	Silizium	bipolar	MOS	FET		
Тур	NPN	PNP	N-Kanal	P-Kanal		
Spannung (UCE)	45 V	45 V	20 V	20 V		
Strom IC/IDS	100 mA	100 mA	3 A	3 A		
RDSON			0,045 Ω	0,065 Ω		
Frequenz (ft)	300	MHz				
Verstärkung (hfe)	600	600				
Anwendungsbereiche	universell		Schalttransistor bis 3 A			
Datenblatt	https://www.diodes.com/assets/ Datasheets/ds11108.pdf https://www.diodes.com/assets/ Datasheets/ds11207.pdf		https://www.infineon.com			

Die MOSFET-Transistoren sind vom Typ IRLML2502 (N-Kanal) und IRLM6402 (P-Kanal). Diese Transistoren sind vorwiegend zum Schalten von Lasten, wie z. B. Motoren, großen Relais oder Power-LEDs gedacht. Obwohl das Gehäuse im SOT23-Gehäuse recht klein ist, können Ströme von 3 A geschaltet werden. Bei einer maximalen Spannung von 20 V ergibt sich so eine Schaltleistung von beachtlichen 60 W. In der Tabelle 2 sind die wichtigsten technischen Daten der Transistoren angegeben.

Für die Bestückung von eigenen bzw. anderen

Für die Bestückung von eigenen bzw. anderen Transistortypen sind einige Leerplatinen vorhanden, erkennbar daran, dass auf der Platinenoberfläche die Daten für Spannung und Strom fehlen.

Bei der Bestückung ist unbedingt auf die richtige Anschlussbelegung zu achten. Mit einigen Ausnahmen ist das Anschlussbild bei Transistoren einheitlich, so wie es auf dem PAD2 verwendet wird. In Bild 14 sind alle verfügbaren Leerplatinen für Transistoren dargestellt.

Spannungsregler

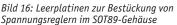
Da der Bedarf nach einem Spannungsregler in Experimentierschaltungen eigentlich immer vorhanden ist, sind auf dem PAD2 Spannungsregler mit drei unterschiedlichen Ausgangsspannungen vorhanden. In der Tabelle 3 sind die technischen Daten der verwendeten Typen ersichtlich. Bild 15 zeigt die dazugehörigen Platinen mit dem Aufdruck auf der Oberseite und dem Bauteil auf der Unterseite. Die notwendigen Kondensatoren (1 μ F/50 V) an Ein- und Ausgängen des Spannungsreglers sind schon auf der Platine bestückt. Vom Hersteller wird immer verlangt, dass diese Kondensatoren so nahe wie möglich an die Pins des Gehäuses platziert werden müssen. Dies ist durch die vorbestückten SMD-Kondensatoren gegeben. Zu-

sätzliche Kondensatoren auf dem späteren Einsatzort (Steckboard) können deshalb entfallen.

Zum Bestücken eigener Spannungsregler (beispielsweise für andere Spannungen) sind zwei Leerplatinen zur Bestückung von ICs im SOT89-Gehäuse vorhanden, die in Bild 16 dargestellt sind.

ന
Ф
96
a

Technischen Daten der Spannungsregler				
Тур	HT7318	TS9011	MC7805	
Eingangsspannung UE	2–12 V	4–12 V	7–35 V	
Ausgangsspannung Uout	1,8 V	3,3 V	5 V	
Ausgangsstrom Iout	250 mA max.	250 mA max.	250 mA max.	
Datenblatt	https://www.holtek.com/documents/10179/116711/HT73xxv180.pdf https://www.onsemi.com/pub/Collateral/MC7800-D.PDF https://www.taiwansemi.com/products/datasheet/TS9011_H1608.pdf			


Die Anschlussbelegung bzw. Reihenfolge ist fest gegeben. Es können nur Spannungsregler verwendet werden, die diesem Schema entsprechen.

	Technischen Daten de	er Dioden (inklusive	LED)	
	Тур	1N4148W	BAT54WS	LED (rot)
	Spannung (max.)	75 V	30 V	3–12 V
	Flussspannung Ur	ca. 0,7 V	ca. 0,3 V	
elle 4	Strom (max.) LED-Strom	0,15 A	0,3 A	2 mA @UB=3 V 21 mA @UB=12 V
ш				

Datenblatt: https://www.vishay.com/docs/85748/1n4148w.pdf

https://www.vishay.com/docs/85667/bat54ws.pdf

O IN OUT	
O TUF O	

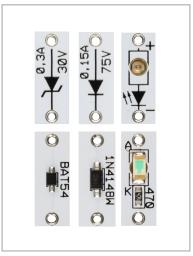


Bild 17: Platinen der drei Diodentypen inklusive LED

Dioden 1N4148W/BAT54 und LED mit Vorwiderstand

Als Standard-Dioden kommen Siliziumdioden (1N4148W) und Schottky-Dioden (BAT54) zum Einsatz. Die wesentlichen technischen Daten wie max. Spannung und Strom sind auf der Platine aufgedruckt (siehe Bild 17). Schottky-Dioden weisen eine sehr geringe Flussspannung von nur ca. 0,3 V auf, und werden deshalb gerne da eingesetzt, wo der relativ große Spannungsabfall einer Siliziumdiode von 0,7 V nicht erwünscht ist. Ein weiterer Vorteil der Schottky-Diode ist, dass die Strombelastbarkeit gegenüber einer Siliziumdiode höher ist, obwohl das Gehäuse im Vergleich zur Siliziumdiode 1N4148W sogar kleiner ist (Bild 17).

In der Tabelle 4 sind die technischen Daten der Dioden zu sehen.

Zusätzlich zu den Dioden gibt es auf dem PAD2 auch 5 LEDs. Normalerweise würde man für eine bedrahtete LED keinen Adapter benötigen, da die Anschlussdrähte auch so in ein Steckboard passen. Der Vorteil bei unserer LED ist aber der zusätzliche Widerstand von 470 Ω (siehe Bild 17). Hierdurch ergibt sich zum einen ein Platzvorteil gegenüber der bedrahteten Variante. Zudem ist die Adapterversion mit Widerstand sehr robust und zerstörungssicher. Der Spannungsbereich erstreckt sich von 3 V bis 12 V, wobei die LED bei höherer Spannung natürlich heller wird, da mehr Strom fließt. Soll die LED mit höherer Spannung betrieben werden, wie z. B. 24 V, ist ein zusätzlicher Widerstand erforderlich, der in Reihe zur LED geschaltet wird. Bei einer Spannung von 24 V muss hier ein Widerstand von ca. 470 Ω eingefügt werden, um den LED-Strom auf 20 mA zu begrenzen.

Die LED ist eine "reverse" LED, die zwar unterhalb der Platine montiert ist, aber durch die Platine hindurch nach oben leuchtet. Hierzu befindet sich in der kleinen Platine eine Bohrung innerhalb des Widerstandsymbols.

Nachbau

Die einzelnen Module sind aus produktionstechnischen Gründen zu einem sogenannten Nutzen zusammengefasst (Bild 18a und 18b).

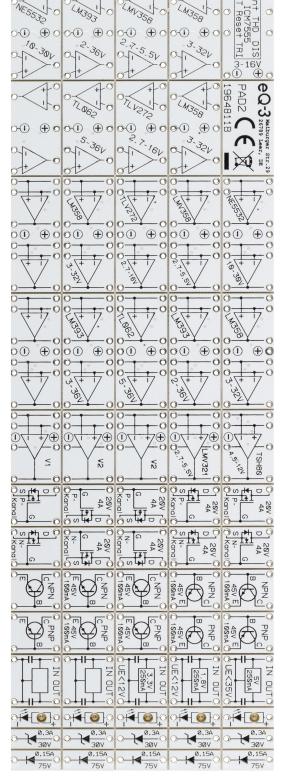


Bild 18a: Nutzen des PAD2 - Vorderseite

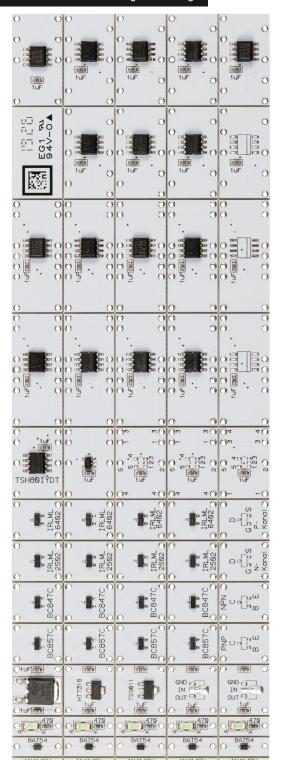


Bild 18b: Nutzen des PAD2 – Rückseite

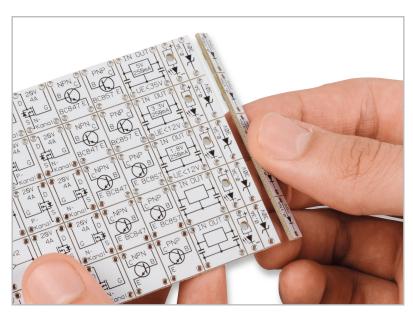


Bild 19: So werden die Platinenabschnitte vom Nutzen getrennt.

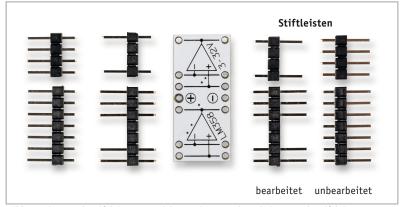


Bild 20: Die 11-pol. Stiftleiste setzt sich aus einer 4-pol. und einer 7-pol. Stiftleiste zusammen. Die Stiftleisten sind bearbeitet und nicht bearbeitet dargestellt.

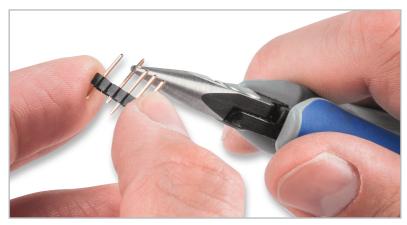


Bild 21: So kann man einzelne Stifte aus einer Stiftleiste herausziehen.

Da die SMD-Bauteile schon vorbestückt sind, besteht der Nachbau aus dem Bestücken und Verlöten der Stiftleisten. Die einzelnen Platinenabschnitte können einfach von Hand auseinandergebrochen werden (Bild 19). Dies sollte ausschließlich mit der Hand erfolgen, und z.B. nicht mit einer Flachzange, da hierdurch die empfindlichen kleinen SMD-Bauteile beschädigt werden können.

Nun besteht die Aufgabe darin, die entsprechenden Stiftleisten aufzulöten. In der Regel sind die passenden Stiftleisten in der entsprechenden Polzahl vorhanden und müssen somit nicht gekürzt werden. Für die benötigte 11-polige Stiftleiste wird eine 4- und eine 7-polige Stiftleiste verwendet (Bild 20). Die nicht benötigten einzelnen Stifte werden mit einer Zange entfernt (herausgezogen), wie es in Bild 21 dargestellt ist. Die so vorbereitete Stiftleiste wird nun von der Platinenunterseite, auf der sich die SMD-Bauteile befinden, eingesetzt. Das Verlöten geschieht auf der Platinenoberfläche, auf der auch das Symbol für das jeweilige Bauteil aufgedruckt ist. Bild 22 zeigt ein fertig aufgebautes Modul.

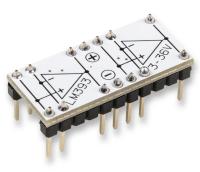


Bild 22: Beispiel für ein fertig aufgebautes Modul

Bild 23: Mit einer Feile wird die Stiftleiste bearbeitet. Dabei ist ein kleiner Schraubstock sehr hilfreich.

Bild 24: Für die Dioden muss der Körper der Stiftleisten bearbeitet werden.

Für die Dioden und LEDs wird eine 5-pol. Stiftleiste verwendet, die das eigentliche Bauteil auf der Platinenunterseite abdeckt. Da die Bauteile eine gewisse Bauhöhe aufweisen, muss der Kunststoffkörper der Stiftleiste zuvor bearbeitet werden.

Wie in Bild 23 dargestellt, wird mit einer Feile eine Kerbe in Größe des Bauteils eingearbeitet (Bild 23 und Bild 24). Diese Kerbe muss so groß sein, dass die Diode darin Platz findet. Da die Platinen für die Dioden relativ klein sind, empfiehlt sich ein kleiner Schraubstock als nützlicher Helfer. Die beiden Anschlüsse werden, nach der Bestückung, auf der Platinenoberseite angelötet (Bild 25).

Da die so angefertigten Platinen auch optisch gut aussehen sollen, empfiehlt sich die Reinigung der Platinenoberfläche. Bei jedem Lötvorgang bleiben unweigerlich Rückstände, vom im Lötzinn enthaltenen Flussmittel, auf der Platine zurück. Diese können mit Alkohol, oder noch besser, mit einem speziellen Reiniger (z. B. Fluxfrei, Bild 26) entfernt werden. Praktisch hat sich hierbei der Einsatz einer (alten) Zahnbürste bewährt. Die zu reinigende Platine wird hierbei kurz eingesprüht und anschließend mit der Zahnbürste gereinigt (Bild 27).

Bild 25: So werden die Anschlüsse der Stiftleiste angelötet.

Individuelle Bestückung der Platinen

Einzelne Platinenmodule sind nicht mit Bauteilen bestückt, das ist erkennbar daran, dass auf der Platinenoberseite die Typenbezeichnung fehlt. Diese Platinenmodule sind für die eigene individuelle Bestückung gedacht. Sollen andere als die auf dem Board befindlichen Bauteile verwendet werden, können diese von Hand aufgelötet werden. Allerdings gilt hier zu beachten, dass zum Auflöten der SMD-Bauteile sehr viel Erfahrung notwendig ist. Die entsprechenden Hinweise gibt es in der Beschreibung der einzelnen Module.

Die selbst erstellten Module können, bei Bedarf, mit einem wasserfesten Stift auf der Oberseite beschriftet werden (Typenbezeichnung).

Bild 26: Spezieller Reiniger für Platinen

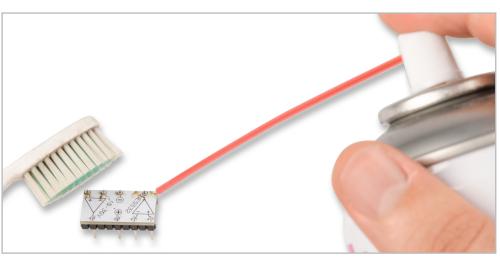


Bild 27: Mit einer Zahnbürste und einem Reiniger werden Rückstände vom Flussmittel entfernt.

Lagerung der Module

Für die Lagerung der angefertigten Module empfehlen wir die in Bild 28 dargestellten SMD-Boxen. Natürlich können auch entsprechend große Sortimentskästen verwendet werden. Die gezeigten SMD-Boxen bieten jedoch den Vorteil, dass diese individuell, entsprechend der benötigten Anzahl an Boxen, zusammengesetzt werden können. Im linken Teil von Bild 28 sind schwarze antistatische SMD-Boxen gezeigt, die vor elektrostatischen Entladungen schützen sollen. Normale Operationsverstärker sind bei vorsichtigem Umgang recht robust und bedürfen keiner speziellen antistatischen Box. Auch MOSFET-Transistoren haben in der Regel interne Schutzdioden, die vor statischen Entladungen schützen.

Bild 28: SMD-Boxen in mittlerer Größen eignen sich hervorragend zur Archivierung der einzelnen Module vom PAD2. Die durchsichtigen Deckel sind mit Typenschildern gekennzeichnet. Die schwarzen Boxen auf der linken Seite sind aus antistatischem Material.

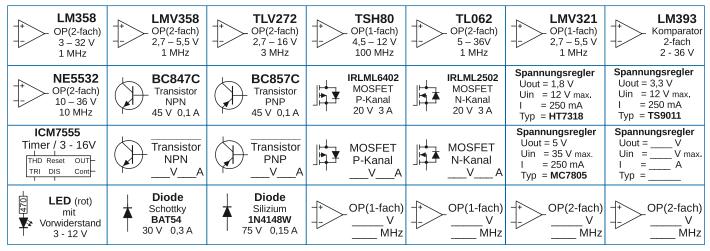


Bild 29: Mit den selbstklebenden Typenschildern lassen sich die Fächer von SMD-Boxen oder anderen Sortierboxen auf einfache Weise beschriften.

Wer ganz sicher gehen möchte, kann natürlich solche speziellen Boxen verwenden.

Im Normalfall reichen Standardboxen (gelb), wie sie im rechten Teil von Bild 28 dargestellt sind.

Zur Beschriftung liegt dem Bausatz ein Bogen mit selbstklebenden Typenschildern bei (Bild 29). Hierdurch wird die Archivierung perfekt, und alle Teile sind sofort griffbereit.

Weitere Infos:

[1] Links zu den technischen Daten der Operationsverstärker:

LM358: www.ti.com/lit/an/sloa277/sloa277.pdf LMV358: http://www.ti.com/lit/gpn/LMV358 NE5532D: http://www.ti.com/lit/gpn/NE5532A LM393: http://www.ti.com/lit/gpn/LM2903 TLV272ID: http://www.ti.com/lit/qpn/tlv272

TSH80IYLT: https://www.st.com/resource/en/datasheet/tsh80.pdf

TL062: http://www.ti.com/lit/gpn/tl062 LMV321: http://www.ti.com/lit/gpn/LM321 LM358: http://www.ti.com/lit/gpn/LM358

[2] Artikelbeschreibung des NE555-EXB: www.elv.com: Artikel-Nr. 150807