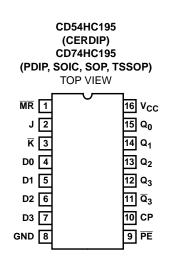
# TEXAS INSTRUMENTS


Data sheet acquired from Harris Semiconductor SCHS165E

September 1997 - Revised October 2003

### Features

- Asynchronous Master Reset
- J, K, (D) Inputs to First Stage
- Fully Synchronous Serial or Parallel Data Transfer
- · Shift Right and Parallel Load Capability
- Complementary Output From Last Stage
- Buffered Inputs
- Typical  $f_{MAX} = 50MHz$  at  $V_{CC} = 5V$ ,  $C_L = 15pF$ ,  $T_A = 25^{\circ}C$
- Fanout (Over Temperature Range)
  - Standard Outputs..... 10 LSTTL Loads
  - Bus Driver Outputs ..... 15 LSTTL Loads
- Wide Operating Temperature Range .... -55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
  - 2V to 6V Operation
  - High Noise Immunity: N<sub>IL</sub> = 30%, N<sub>IH</sub> = 30% of V<sub>CC</sub> at V<sub>CC</sub> = 5V





# CD54HC195, CD74HC195

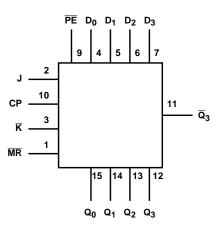
# High-Speed CMOS Logic 4-Bit Parallel Access Register

### Description

The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial to parallel, or parallel to serial data transfers at very high speeds.

The two modes of operation, shift right  $(Q_0-Q_1)$  and parallel load, are controlled by the state of the Parallel Enable ( $\overline{PE}$ ) input. Serial data enters the first flip-flop  $(Q_0)$  via the J and  $\overline{K}$ inputs when the  $\overline{PE}$  input is high, and is shifted one bit in the direction  $Q_0-Q_1-Q_2-Q_3$  following each Low to High clock transition. The J and  $\overline{K}$  inputs provide the flexibility of the JKtype input for special applications and by tying the two pins together, the simple D-type input for general applications. The device appears as four common-clocked D flip-flops when the  $\overline{PE}$  input is Low. After the Low to High clock transition, data on the parallel inputs (D0-D3) is transferred to the respective  $Q_0-Q_3$  outputs. Shift left operation  $(Q_3-Q_2)$ can be achieved by tying the  $Q_n$  outputs to the Dn-1 inputs and holding the  $\overline{PE}$  input low.

All parallel and serial data transfers are synchronous, occurring after each Low to High clock transition. The 'HC195 series utilizes edge triggering; therefore, there is no restriction on the activity of the J,  $\overline{K}$ , Pn and  $\overline{PE}$  inputs for logic operations, other than set-up and hold time requirements. A Low on the asynchronous Master Reset ( $\overline{MR}$ ) input sets all Q outputs Low, independent of any other input condition.


## **Ordering Information**

| PART NUMBER  | TEMP. RANGE<br>( <sup>o</sup> C) | PACKAGE      |
|--------------|----------------------------------|--------------|
| CD54HC195F3A | -55 to 125                       | 16 Ld CERDIP |
| CD74HC195E   | -55 to 125                       | 16 Ld PDIP   |
| CD74HC195M   | -55 to 125                       | 16 Ld SOIC   |
| CD74HC195NSR | -55 to 125                       | 16 Ld SOP    |
| CD74HC195PW  | -55 to 125                       | 16 Ld TSSOP  |
| CD74HC195PWR | -55 to 125                       | 16 Ld TSSOP  |
| CD74HC195PWT | -55 to 125                       | 16 Ld TSSOP  |

NOTE: When ordering, use the entire part number. The suffix R denotes tape and reel. The suffix T denotes a small-quantity reel of 250.

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. Copyright © 2003, Texas Instruments Incorporated

# Functional Diagram



#### TRUTH TABLE

|                           |    |    | INP | UTS | OUTPUT |    |                  |                |                |                |                  |
|---------------------------|----|----|-----|-----|--------|----|------------------|----------------|----------------|----------------|------------------|
| OPERATING MODES           | MR | СР | PE  | J   | ĸ      | Dn | Q <sub>0</sub>   | Q <sub>1</sub> | Q <sub>2</sub> | Q <sub>3</sub> | $\overline{Q}_3$ |
| Asynchronous Reset        | L  | Х  | Х   | Х   | Х      | Х  | L                | L              | L              | L              | Н                |
| Shift, Set First Stage    | Н  | Ŷ  | h   | h   | h      | Х  | н                | q <sub>0</sub> | q <sub>1</sub> | 9 <sub>2</sub> | $\bar{q}_2$      |
| Shift, Reset First Stage  | Н  | Ŷ  | h   | I   | I      | Х  | L                | q <sub>0</sub> | q <sub>1</sub> | 9 <sub>2</sub> | $\bar{q}_2$      |
| Shift, Toggle First Stage | Н  | Ŷ  | h   | h   | I      | Х  | $\overline{q}_0$ | q <sub>0</sub> | q <sub>1</sub> | 9 <sub>2</sub> | $\bar{q}_2$      |
| Shift, Retain First Stage | Н  | Ŷ  | h   | I   | h      | Х  | q <sub>0</sub>   | q <sub>0</sub> | q <sub>1</sub> | q <sub>2</sub> | $\bar{q}_2$      |
| Parallel Load             | Н  | Ŷ  | I   | х   | Х      | dn | d <sub>0</sub>   | d <sub>1</sub> | d <sub>2</sub> | d3             | d2               |

H = High Voltage Level

L = Low Voltage Level,

X = Don't Care

 $\uparrow$  = Transition from Low to High Level

I = Low Voltage Level One Set-up Time Prior to the Low to High Clock Transition

h = Low Voltage Level One Set-up Time prior to the High to Low Clock Transition,

dn  $(q_n)$  = Lower Case Letters Indicate the State of the Referenced Input (or output) One Set-up Time Prior to the Low to High Clock Transition.

### **Absolute Maximum Ratings**

| DC Supply Voltage, V <sub>CC</sub>                                              |
|---------------------------------------------------------------------------------|
| DC Input Diode Current, I <sub>IK</sub>                                         |
| For $V_I < -0.5V$ or $V_I > V_{CC} + 0.5V$ ±20mA                                |
| DC Output Diode Current, I <sub>OK</sub>                                        |
| For $V_0 < -0.5V$ or $V_0 > V_{CC} + 0.5V$                                      |
| DC Output Source or Sink Current per Output Pin, IO                             |
| For $V_{O} > -0.5V$ or $V_{O} < V_{CC} + 0.5V$                                  |
| DC V <sub>CC</sub> or Ground Current, I <sub>CC or</sub> I <sub>GND</sub> ±50mA |
| Operating Conditions                                                            |

| openand contained of                                                              |
|-----------------------------------------------------------------------------------|
| Temperature Range (T <sub>A</sub> )                                               |
| Supply Voltage Range, V <sub>CC</sub>                                             |
| HC Types                                                                          |
| HCT Types                                                                         |
| DC Input or Output Voltage, V <sub>I</sub> , V <sub>O</sub> 0V to V <sub>CC</sub> |
| Input Rise and Fall Time                                                          |
| 2V                                                                                |
| 4.5V 500ns (Max)                                                                  |
| 6V                                                                                |
|                                                                                   |

#### **Thermal Information**

| Package Thermal Impedance, $\theta_{JA}$ (see Note 1): |
|--------------------------------------------------------|
| E (PDIP) Package67 <sup>o</sup> C/W                    |
| M (SOIC) Package                                       |
| NS (SOP) Package 64 <sup>o</sup> C/W                   |
| PW (TSSOP) Package 108 <sup>o</sup> C/W                |
| Maximum Junction Temperature                           |
| Maximum Storage Temperature Range                      |
| Maximum Lead Temperature (Soldering 10s)               |
| (SOIC - Lead Tips Only)                                |
|                                                        |

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

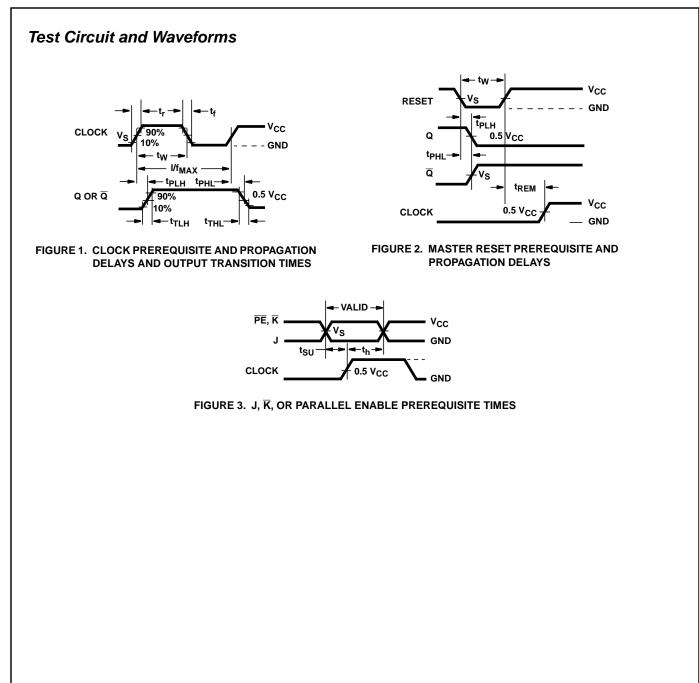
NOTE:

1. The package thermal impedance is calculated in accordance with JESD 51-7.

### **DC Electrical Specifications**

|                             |                 | TES<br>CONDI                                               | -                   |                     |      | 25 <sup>0</sup> C |      | -40°C T | O 85°C | -55 <sup>0</sup> С Т | O 125 <sup>0</sup> C |       |   |  |   |      |   |   |   |     |   |     |   |     |
|-----------------------------|-----------------|------------------------------------------------------------|---------------------|---------------------|------|-------------------|------|---------|--------|----------------------|----------------------|-------|---|--|---|------|---|---|---|-----|---|-----|---|-----|
| PARAMETER                   | SYMBOL          | V <sub>I</sub> (V)                                         | I <sub>O</sub> (mA) | V <sub>CC</sub> (V) | MIN  | TYP               | MAX  | MIN     | MAX    | MIN                  | MAX                  | UNITS |   |  |   |      |   |   |   |     |   |     |   |     |
| High Level Input            | VIH             | -                                                          | -                   | 2                   | 1.5  | -                 | -    | 1.5     | -      | 1.5                  | -                    | V     |   |  |   |      |   |   |   |     |   |     |   |     |
| Voltage                     |                 |                                                            |                     | 4.5                 | 3.15 | -                 | -    | 3.15    | -      | 3.15                 | -                    | V     |   |  |   |      |   |   |   |     |   |     |   |     |
|                             |                 |                                                            |                     | 6                   | 4.2  | -                 | -    | 4.2     | -      | 4.2                  | -                    | V     |   |  |   |      |   |   |   |     |   |     |   |     |
| Low Level Input<br>Voltage  | VIL             | -                                                          | -                   | 2                   | -    | -                 | 0.5  | -       | 0.5    | -                    | 0.5                  | V     |   |  |   |      |   |   |   |     |   |     |   |     |
|                             |                 |                                                            |                     | 4.5                 | -    | -                 | 1.35 | -       | 1.35   | -                    | 1.35                 | V     |   |  |   |      |   |   |   |     |   |     |   |     |
|                             |                 |                                                            |                     | 6                   | -    | -                 | 1.8  | -       | 1.8    | -                    | 1.8                  | V     |   |  |   |      |   |   |   |     |   |     |   |     |
| High Level Output           | V <sub>OH</sub> | $V_{\mbox{\scriptsize IH}}$ or $V_{\mbox{\scriptsize IL}}$ | -0.02               | 2                   | 1.9  | -                 | -    | 1.9     | -      | 1.9                  | -                    | V     |   |  |   |      |   |   |   |     |   |     |   |     |
| Voltage<br>CMOS Loads       |                 |                                                            | -0.02               | 4.5                 | 4.4  | -                 | -    | 4.4     | -      | 4.4                  | -                    | V     |   |  |   |      |   |   |   |     |   |     |   |     |
| CINOS LOAUS                 |                 |                                                            | -0.02               | 6                   | 5.9  | -                 | -    | 5.9     | -      | 5.9                  | -                    | V     |   |  |   |      |   |   |   |     |   |     |   |     |
| High Level Output           | 1               |                                                            | -                   | -                   | -    | -                 | -    | -       | -      | -                    | -                    | V     |   |  |   |      |   |   |   |     |   |     |   |     |
| Voltage<br>TTL Loads        |                 |                                                            | -4                  | 4.5                 | 3.98 | -                 | -    | 3.84    | -      | 3.7                  | -                    | V     |   |  |   |      |   |   |   |     |   |     |   |     |
|                             |                 |                                                            | -5.2                | 6                   | 5.48 | -                 | -    | 5.34    | -      | 5.2                  | -                    | V     |   |  |   |      |   |   |   |     |   |     |   |     |
| Low Level Output            | V <sub>OL</sub> | V <sub>IH</sub> or V <sub>IL</sub>                         | 0.02                | 2                   | -    | -                 | 0.1  | -       | 0.1    | -                    | 0.1                  | V     |   |  |   |      |   |   |   |     |   |     |   |     |
| Voltage<br>CMOS Loads       |                 |                                                            | 0.02                | 4.5                 | -    | -                 | 0.1  | -       | 0.1    | -                    | 0.1                  | V     |   |  |   |      |   |   |   |     |   |     |   |     |
| CINOS LOADS                 |                 |                                                            |                     | _                   |      | _                 | F    |         | -      |                      |                      |       | ( |  | ( | 0.02 | 6 | - | - | 0.1 | - | 0.1 | - | 0.1 |
| Low Level Output            | 1               |                                                            | -                   | -                   | -    | -                 | -    | -       | -      | -                    | -                    | V     |   |  |   |      |   |   |   |     |   |     |   |     |
| Voltage<br>TTL Loads        |                 |                                                            | 4                   | 4.5                 | -    | -                 | 0.26 | -       | 0.33   | -                    | 0.4                  | V     |   |  |   |      |   |   |   |     |   |     |   |     |
| TTL LOADS                   |                 |                                                            | 5.2                 | 6                   | -    | -                 | 0.26 | -       | 0.33   | -                    | 0.4                  | V     |   |  |   |      |   |   |   |     |   |     |   |     |
| Input Leakage<br>Current    | lı lı           | V <sub>CC</sub> or<br>GND                                  | -                   | 6                   | -    | -                 | ±0.1 | -       | ±1     | -                    | ±1                   | μA    |   |  |   |      |   |   |   |     |   |     |   |     |
| Quiescent Device<br>Current | ICC             | V <sub>CC</sub> or<br>GND                                  | 0                   | 6                   | -    | -                 | 8    | -       | 80     | -                    | 160                  | μΑ    |   |  |   |      |   |   |   |     |   |     |   |     |

## **Prerequisite For Switching Function**


|                                              |                  | TEST       |                     | 25  | °C  | -40 <sup>o</sup> C 1 | O 85°C | -55°C T |     |       |
|----------------------------------------------|------------------|------------|---------------------|-----|-----|----------------------|--------|---------|-----|-------|
| PARAMETER                                    | SYMBOL           | CONDITIONS | V <sub>CC</sub> (V) | MIN | MAX | MIN                  | MAX    | MIN     | MAX | UNITS |
| Clock Frequency                              | f <sub>MAX</sub> | -          | 2                   | 6   | -   | 5                    | -      | 4       | -   | MHz   |
|                                              |                  |            | 4.5                 | 30  | -   | 25                   | -      | 20      | -   | MHz   |
|                                              |                  |            | 6                   | 35  | -   | 29                   | -      | 23      | -   | MHz   |
| MR Pulse Width                               | t <sub>w</sub>   | -          | 2                   | 80  | -   | 100                  | -      | 120     | -   | ns    |
|                                              |                  |            | 4.5                 | 16  | -   | 20                   | -      | 24      | -   | ns    |
|                                              |                  |            | 6                   | 14  | -   | 17                   | -      | 20      | -   | ns    |
| Clock Pulse Width                            | t <sub>w</sub>   | -          | 2                   | 80  | -   | 100                  | -      | 120     | -   | ns    |
|                                              |                  |            | 4.5                 | 16  | -   | 20                   | -      | 24      | -   | ns    |
|                                              |                  |            | 6                   | 14  | -   | 17                   | -      | 20      | -   | ns    |
| Set-up Time                                  | ts∪              | -          | 2                   | 100 | -   | 125                  | -      | 150     | -   | ns    |
| J, $\overline{K}$ , $\overline{PE}$ to Clock |                  |            | 4.5                 | 20  | -   | 25                   | -      | 30      | -   | ns    |
|                                              |                  |            | 6                   | 17  | -   | 21                   | -      | 26      | -   | ns    |
| Hold Time                                    | t <sub>H</sub>   | -          | 2                   | 3   | -   | 3                    | -      | 3       | -   | ns    |
| J, $\overline{K}$ , $\overline{PE}$ to Clock |                  |            | 4.5                 | 3   | -   | 3                    | -      | 3       | -   | ns    |
|                                              |                  |            | 6                   | 5   | -   | 3                    | -      | 3       | -   | ns    |
| Removal Time,                                | <sup>t</sup> REM | -          | 2                   | 80  | -   | 100                  | -      | 120     | -   | ns    |
| MR to Clock                                  |                  |            | 4.5                 | 16  | -   | 20                   | -      | 24      | -   | ns    |
|                                              |                  |            | 6                   | 14  | -   | 17                   | -      | 20      | -   | ns    |

### Switching Specifications Input t<sub>r</sub>, t<sub>f</sub> = 6ns

|                                               |                                     | TEST                  |                     | 25  | °C  | -40°C TO 85°C | -55°C TO 125°C |       |
|-----------------------------------------------|-------------------------------------|-----------------------|---------------------|-----|-----|---------------|----------------|-------|
| PARAMETER                                     | SYMBOL                              | CONDITIONS            | V <sub>CC</sub> (V) | ТҮР | MAX | MAX           | МАХ            | UNITS |
| HC TYPES                                      |                                     |                       |                     |     | -   |               |                |       |
| Propagation Delay, CP to                      | t <sub>PLH</sub> , t <sub>PHL</sub> | $C_L = 50 pF$         | 2                   | -   | 175 | 220           | 265            | ns    |
| Output                                        |                                     |                       | 4.5                 | -   | 35  | 44            | 53             | ns    |
|                                               |                                     |                       | 6                   | -   | 30  | 37            | 45             | ns    |
| Propagation Delay,                            | t <sub>PLH</sub> , t <sub>PHL</sub> | C <sub>L</sub> = 50pF | 2                   | -   | 150 | 190           | 225            | ns    |
| MR toOutput                                   |                                     |                       | 4.5                 | -   | 30  | 38            | 45             | ns    |
|                                               |                                     |                       | 6                   | -   | 26  | 33            | 38             | ns    |
| Output Transition Times                       | t <sub>TLH</sub> , t <sub>THL</sub> | C <sub>L</sub> = 50pF | 2                   | -   | 75  | 95            | 110            | ns    |
| (Figure 1)                                    |                                     |                       | 4.5                 | -   | 15  | 19            | 22             | ns    |
|                                               |                                     |                       | 6                   | -   | 13  | 16            | 19             | ns    |
| Input Capacitance                             | C <sub>IN</sub>                     | -                     | -                   | -   | 10  | 10            | 10             | pF    |
| CP to Q <sub>n</sub> Propagation Delay        | t <sub>PLH</sub> , t <sub>PHL</sub> | C <sub>L</sub> = 15pF | 5                   | 14  | -   | -             | -              | ns    |
| $\overline{\text{MR}}$ to $\text{Q}_{n}$      | t <sub>PHL</sub>                    | C <sub>L</sub> = 15pF | 5                   | 13  | -   | -             | -              | ns    |
| Maximum Clock Frequency                       | f <sub>MAX</sub>                    | C <sub>L</sub> = 15pF | 5                   | 50  | -   | -             | -              | MHz   |
| Power Dissipation<br>Capacitance (Notes 2, 3) | C <sub>PD</sub>                     | C <sub>L</sub> = 15pF |                     | 45  | -   | -             | -              | pF    |

#### NOTES:

2.  $C_{PD}$  is used to determine the dynamic power consumption, per flip-flop. 3.  $P_D = V_{CC}^2 f_i + \sum (C_L V_{CC}^2 + f_O)$  where  $f_i$  = Input Frequency,  $f_O$  = Output Frequency,  $C_L$  = Output Load Capacitance,  $V_{CC}$  = Supply Voltage.





9-May-2014

## PACKAGING INFORMATION

| Orderable Device | Status | Package Type | Package<br>Drawing | Pins | •    | Eco Plan                   | Lead/Ball Finish | MSL Peak Temp                                      | Op Temp (°C) | Device Marking | Samples |
|------------------|--------|--------------|--------------------|------|------|----------------------------|------------------|----------------------------------------------------|--------------|----------------|---------|
|                  | (1)    |              |                    |      | Qty  | (2)                        | (6)              | (3)                                                |              | (4/5)          |         |
| CD74HC195E       | ACTIVE | PDIP         | N                  | 16   | 25   | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type                                 | -55 to 125   | CD74HC195E     | Samples |
| CD74HC195EE4     | ACTIVE | PDIP         | Ν                  | 16   | 25   | Pb-Free<br>(RoHS)          | CU NIPDAU        | CU NIPDAU N / A for Pkg Type -55 to 125 CD74HC195E |              | CD74HC195E     | Samples |
| CD74HC195M       | ACTIVE | SOIC         | D                  | 16   | 40   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM                                 | -55 to 125   | HC195M         | Samples |
| CD74HC195M96     | ACTIVE | SOIC         | D                  | 16   | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM                                 | -55 to 125   | HC195M         | Samples |
| CD74HC195M96E4   | ACTIVE | SOIC         | D                  | 16   |      | TBD                        | Call TI          | Call TI                                            | -55 to 125   | HC195M         | Samples |
| CD74HC195M96G4   | ACTIVE | SOIC         | D                  | 16   | 2500 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM                                 | -55 to 125   | HC195M         | Samples |
| CD74HC195ME4     | ACTIVE | SOIC         | D                  | 16   |      | TBD                        | Call TI          | Call TI                                            | -55 to 125   | HC195M         | Samples |
| CD74HC195MG4     | ACTIVE | SOIC         | D                  | 16   | 40   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM                                 | -55 to 125   | HC195M         | Samples |
| CD74HC195NSR     | ACTIVE | SO           | NS                 | 16   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM                                 | -55 to 125   | HC195M         | Samples |
| CD74HC195NSRE4   | ACTIVE | SO           | NS                 | 16   |      | TBD                        | Call TI          | Call TI                                            | -55 to 125   | HC195M         | Samples |
| CD74HC195NSRG4   | ACTIVE | SO           | NS                 | 16   |      | TBD                        | Call TI          | Call TI                                            | -55 to 125   | HC195M         | Samples |
| CD74HC195PW      | ACTIVE | TSSOP        | PW                 | 16   | 90   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM                                 | -55 to 125   | HJ195          | Samples |
| CD74HC195PWE4    | ACTIVE | TSSOP        | PW                 | 16   |      | TBD                        | Call TI          | Call TI                                            | -55 to 125   | HJ195          | Samples |
| CD74HC195PWG4    | ACTIVE | TSSOP        | PW                 | 16   | 90   | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM                                 | -55 to 125   | HJ195          | Samples |
| CD74HC195PWR     | ACTIVE | TSSOP        | PW                 | 16   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM                                 | -55 to 125   | HJ195          | Samples |
| CD74HC195PWRE4   | ACTIVE | TSSOP        | PW                 | 16   |      | TBD                        | Call TI          | Call TI                                            | -55 to 125   | HJ195          | Samples |
| CD74HC195PWRG4   | ACTIVE | TSSOP        | PW                 | 16   |      | TBD                        | Call TI          | Call TI                                            | -55 to 125   | HJ195          | Samples |
| CD74HC195PWT     | ACTIVE | TSSOP        | PW                 | 16   | 250  | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM                                 | -55 to 125   | HJ195          | Samples |



9-May-2014

| Orderable Device | Status | Package Typ |         | Pins | Package | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking | Samples |
|------------------|--------|-------------|---------|------|---------|----------|------------------|---------------|--------------|----------------|---------|
|                  | (1)    |             | Drawing |      | Qty     | (2)      | (6)              | (3)           |              | (4/5)          |         |
| CD74HC195PWTE4   | ACTIVE | TSSOP       | PW      | 16   |         | TBD      | Call TI          | Call TI       | -55 to 125   | HJ195          | Samples |
| CD74HC195PWTG4   | ACTIVE | TSSOP       | PW      | 16   |         | TBD      | Call TI          | Call TI       | -55 to 125   | HJ195          | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(3)</sup> MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

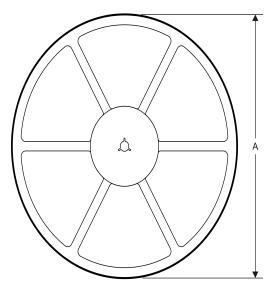
<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

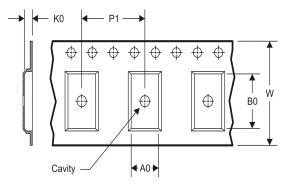
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


# PACKAGE MATERIALS INFORMATION

www.ti.com

### TAPE AND REEL INFORMATION

#### REEL DIMENSIONS


TEXAS INSTRUMENTS



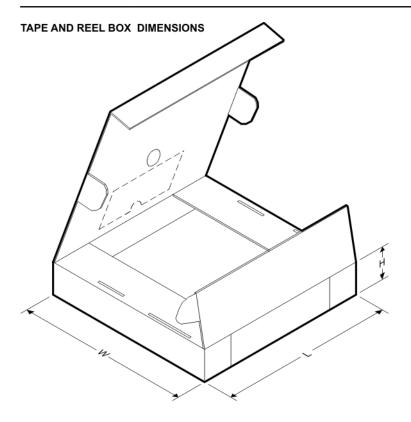


TAPE AND REEL INFORMATION

#### TAPE DIMENSIONS



| A0 | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| B0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |


| *All dimensions are nominal Device | Package | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|------------------------------------|---------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| CD74HC195M96                       | SOIC    | D                  | 16 | 2500 | 330.0                    | 16.4                     | 6.5        | 10.3       | 2.1        | 8.0        | 16.0      | Q1               |
| CD74HC195NSR                       | SO      | NS                 | 16 | 2000 | 330.0                    | 16.4                     | 8.2        | 10.5       | 2.5        | 12.0       | 16.0      | Q1               |
| CD74HC195PWR                       | TSSOP   | PW                 | 16 | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| CD74HC195PWT                       | TSSOP   | PW                 | 16 | 250  | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |

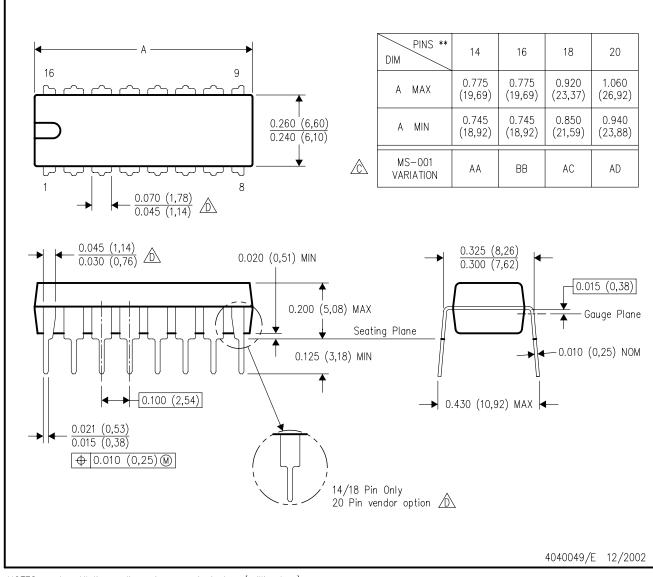
TEXAS INSTRUMENTS

www.ti.com

# PACKAGE MATERIALS INFORMATION

14-Jul-2012




\*All dimensions are nominal

| Device       | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|--------------|--------------|-----------------|------|------|-------------|------------|-------------|
| CD74HC195M96 | SOIC         | D               | 16   | 2500 | 333.2       | 345.9      | 28.6        |
| CD74HC195NSR | SO           | NS              | 16   | 2000 | 367.0       | 367.0      | 38.0        |
| CD74HC195PWR | TSSOP        | PW              | 16   | 2000 | 367.0       | 367.0      | 35.0        |
| CD74HC195PWT | TSSOP        | PW              | 16   | 250  | 367.0       | 367.0      | 35.0        |

# N (R-PDIP-T\*\*)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- $\triangle$  The 20 pin end lead shoulder width is a vendor option, either half or full width.



D (R-PDSO-G16)

PLASTIC SMALL OUTLINE



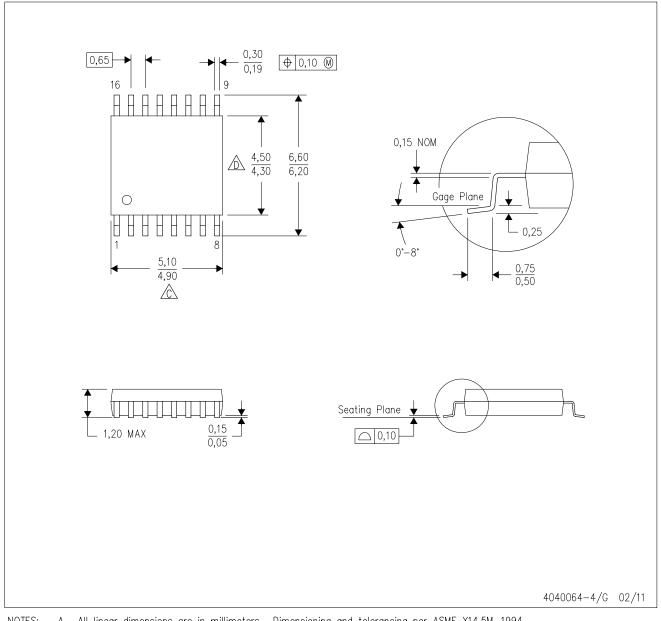
NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.



4211283-4/E 08/12

# D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
   E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



PW (R-PDSO-G16)

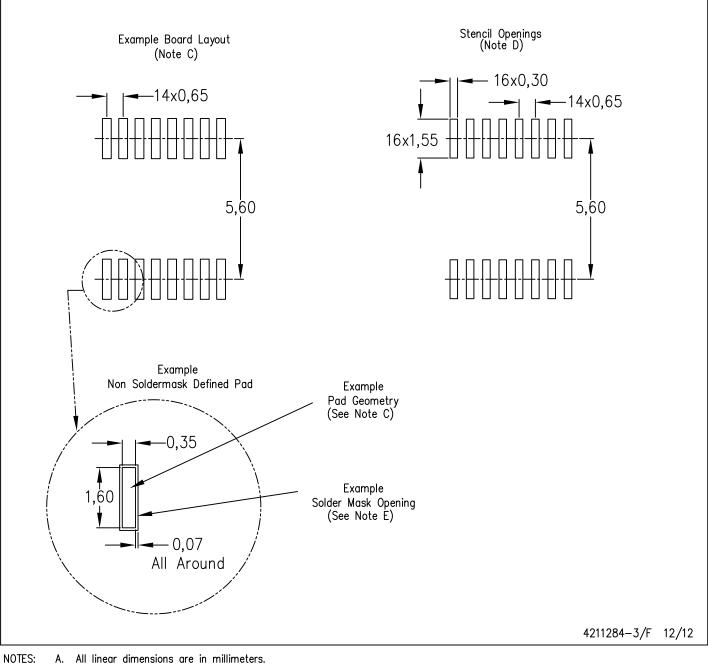
PLASTIC SMALL OUTLINE



NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.  $\beta$ . This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.


Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153



# PW (R-PDSO-G16)

# PLASTIC SMALL OUTLINE



- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



## MECHANICAL DATA

### PLASTIC SMALL-OUTLINE PACKAGE

#### 0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 $\bigcirc$ Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS \*\* 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G\*\*)

**14-PINS SHOWN** 

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

| Products                     |                                 | Applications                  |                                   |  |  |
|------------------------------|---------------------------------|-------------------------------|-----------------------------------|--|--|
| Audio                        | www.ti.com/audio                | Automotive and Transportation | www.ti.com/automotive             |  |  |
| Amplifiers                   | amplifier.ti.com                | Communications and Telecom    | www.ti.com/communications         |  |  |
| Data Converters              | dataconverter.ti.com            | Computers and Peripherals     | www.ti.com/computers              |  |  |
| DLP® Products                | www.dlp.com                     | Consumer Electronics          | www.ti.com/consumer-apps          |  |  |
| DSP                          | dsp.ti.com                      | Energy and Lighting           | www.ti.com/energy                 |  |  |
| Clocks and Timers            | www.ti.com/clocks               | Industrial                    | www.ti.com/industrial             |  |  |
| Interface                    | interface.ti.com                | Medical                       | www.ti.com/medical                |  |  |
| Logic                        | logic.ti.com                    | Security                      | www.ti.com/security               |  |  |
| Power Mgmt                   | power.ti.com                    | Space, Avionics and Defense   | www.ti.com/space-avionics-defense |  |  |
| Microcontrollers             | microcontroller.ti.com          | Video and Imaging             | www.ti.com/video                  |  |  |
| RFID                         | www.ti-rfid.com                 |                               |                                   |  |  |
| OMAP Applications Processors | www.ti.com/omap                 | TI E2E Community              | e2e.ti.com                        |  |  |
| Wireless Connectivity        | www.ti.com/wirelessconnectivity |                               |                                   |  |  |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated